
1/31/2002 1

Something fundamental is brewing...

• Increasing prevalence of mobile work, ad hoc teams and computers
conversing with computers

• Growing numbers of embedded and mobile information appliances
– PDAs, cell phones, CrossPad, InfoPen…
– Over 4 billion embedded processors sold per year

• Rich and growing pico-cellular wireless technologies
– Bluetooth, HomeRF, 802.11, IrDA…
– Bluetooth to produce a 9x9mm radio on a chip

• Emerging technologies for dynamic service discovery
– Jini, Universal Plug-and-Play, Service Location Protocol…

• Increasing use of Next-Generation Software Languages and Tools
– Java, Tcl, DCOM, JavaScript, REBOL...

…leading to a concept that ITL calls
Pervasive Computing

1/31/2002 2

Pervasive Computing:
The Key Defining Properties

• Ubiquitous
– Low-Cost
– Embedded
– Distributed
– Non-intrusive
– Innumerable

• Interconnected
– Wired Core
– Wireless Edge

• Dynamic
– Mobile
– Self-configuring

1/31/2002 3

ITL Pervasive Computing Portfolio

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart RoomsUser Interfaces
Division

Software
Division

Networking
Division

ITL Division* Reference Model

Relevant Industry Technologies
• Jini
• Service Location Protocol
• Universal Plug and Play
• Salutation Consortium
• Bluetooth Service Discovery

• IEEE 802.15 Wireless Personal
Area Networks (WPAN)

• Bluetooth SIG
• HomeRF Consortium
• Ultra Wideband Communications

*These three divisions sponsored
Pervasive Computing 2000, the
first industry conference on this
topic. And, of course, there is a large
space for the Security Division

Focus of Networking Division

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart Rooms

Pico-cellular Wireless
Technologies

Dynamic Service and
Device Discovery

Technologies

Pervasive
Applications

Advanced
User

Interfaces

Dynamic Programming
Models

Smart RoomsUser Interfaces
Division

Software
Division

Networking
Division

ITL Division* Reference Model

Relevant Industry Technologies
• Jini
• Service Location Protocol
• Universal Plug and Play
• Salutation Consortium
• Bluetooth Service Discovery

• IEEE 802.15 Wireless Personal
Area Networks (WPAN)

• Bluetooth SIG
• HomeRF Consortium
• Ultra Wideband Communications

*These three divisions sponsored
Pervasive Computing 2000, the
first industry conference on this
topic. And, of course, there is a large
space for the Security Division

Focus of Networking Division

1/31/2002 4

Pico-Cellular Wireless Technologies
• Network division has joined the Bluetooth SIG and the HomeRF Consortium

– Reviewed, analyzed, and commented on the Bluetooth and HomeRF specs.
– Develop an SDL model for the Bluetooth link layer

• Network division helped form IEEE 802.15 (WPAN) and helped to convince
Bluetooth to submit its specification

– Nada Golmie co-chairs the co-existence subgroup, which is working to understand
co-interference among wireless technologies in the unlicensed 2.4 GHz band and
to develop techniques for different technologies to co-exist within that band.

– David Cypher submitted his Bluetooth model and continues to work with the
industry players to improve the quality of the WPAN specifications

• Ultra-Wideband Wireless Communications Technology is expected to be
permitted by the FCC soon

–This technology will permit higher speeds over even smaller distances; thus,
boosting the prospects for the application of mobile, pervasive computing
technologies

– Nader has been holding discussions with some parties that are interested in this
technology

1/31/2002 5

Assessing the stateAssessing the state--ofof--thethe--art in Dynamic art in Dynamic
Discovery of Ad Hoc Network ServicesDiscovery of Ad Hoc Network Services

Christopher Dabrowski, Olivier Mathieu, Kevin Mills, Doug Montgomery,
and Scott Rose

ARDA Interim Review Meeting
December 21, 2000

COTR is Greg Puffenbarger

A Project in the ITL Pervasive Computing Portfolio

1/31/2002 6

Project Goal
Compare and contrast emerging commercial service discovery technologies

with regard to function, structure, behavior, performance and scalability.

Universal

Plug and Play

1/31/2002 7

Olivier Mathieu, Code Instrumentation
Doug Montgomery, Measurement Approaches and Techniques
Scott Rose, Generic Service Design and Implementation

Christopher Dabrowksi, Architecture Description Languages and Tools
Kevin Mills, Scenarios, Metrics, and Properties

Project Team

1/31/2002 8

Presentation Topics
Planned Approach to Modeling and Analysis and Current Status

Planned Approach to Measurement and Current Status

Technical Discussion of Initial Progress

Generic and Specific UML Models Encompassing Jini, UPnP,
SLP, HAVi, and Bluetooth (Saluation to be assessed later)

Rapide Model for Jini (90% complete)

Initial Measurement Testbed and Infrastructure Running for Jini
and UPnP

Upcoming Milestones and Planned Publications

Demonstration

1/31/2002 9

Modeling Function, Structure, and Behavior

Products
• Rapide specifications of Jini, Universal Plug and Play

(UPnP), and Service Location Protocol (SLP)
• Scenarios and topologies for evaluating discovery protocols
• Suggested invariant properties for service discovery protocols
• Suggested metrics, based on partially ordered sets

(POSETs), for comparing and contrasting discovery protocols
• Paper identifying flaws in Jini and UPnP and describing how

these flaws were found
• Paper proposing invariants for service discovery protocols,

and evaluating how Jini, UPnP, and SLP fare
• Paper comparing and contrasting Jini, UPnP, and SLP at

the level of POSET metrics

Objectives
(1) Provide increased understanding of the competing

dynamic discovery services emerging in industry
(2) Develop metrics for comparative analysis of different

approaches to dynamic discovery and for analyzing
consistency and completeness of discovery protocols

(3) Assess suitability of architecture description languages to
model and analyze emerging dynamic discovery protocols

Technical Approach
Develop ADL models from selected specifications for service
discovery protocols and develop a suite of scenarios and
topologies with which to exercise the ADL models
Propose a set of invariant properties that all dynamic
discovery protocols should satisfy
Propose a set of metrics, based on partially ordered sets,
with which to compare and contrast discovery protocols
Analyze the ADL models to search for flaws, to assess
invariant satisfaction, and to compare and contrast protocols

Status as of December 21, 2000

• Developed a generic UML model encompassing the
structure and function of Jini, UPnP, SLP, Bluetooth,
and HAVi

• Projected specific UML models for Jini, UPnP, and SLP
• Developed a Rapide Model of Jini structure, function,

and behavior (90% complete)
• Drafted a scenario language to drive the Rapide Jini

Model
• Developed some initial invariants and constraints for

Jini behavioral model
• Discovered a number of ambiguities and

inconsistencies in Jini Specification V1.1
• Discovered a major architectural flaw in the interaction

between Jini directed discovery and multicast discovery

1/31/2002 10

Measuring Performance and Scalability

Products
• Experimenter’s toolkits consisting of synthetic workload

generation tools, scenario scripts, and performance
measurement tools for SDPs.

• Measurement methodologies and tools for SDPs and
supporting protocols.

• Ad-hoc network simulation environment and SDP protocol
models.

• Publications / standards contributions providing quantitative
analysis of the relative performance and scaling properties
of SDPs.

Objectives
(1) Provide a quantitative, comparative analysis of the

performance and scaling characteristics of emerging
service discovery protocols (SDPs).

(3) Design methodologies and tools for performance and
scaling measurement of SDPs and supporting protocols.

(4) Develop simulation tools for large scale ad-hoc
network / application environments

Technical Approach
Design and develop experimenters toolkits for conducting
live performance analysis of SPDs implementations.
Propose metrics and scenarios for comparing the
performance of multiple SDP protocols.
Design and develop simulation models of emerging SDPs
and adhoc network environments.
Analyze and compare the performance of SDPs based upon
testbed measurements and simulation.

Status as of December 21, 2000

• Designed methodology and scenarios for comparative
performance evaluation of live Jini and UPnP
implementations.

• Established testbed with Sun Jini, Intel/Microsoft UPnP
implementations.

• Developed synthetic workload generation tools for Jini and
UPnP capable of emulating 10’s-100’s of devices/services
and control point / clients.

• Discovered scaling problems with Intel Linux UPnP 1.0
implementation. Conducted initial investigations in protocol
/ parameter tuning to increase the scalability of this
implementation.

• Began design and development of on-the-wire performance
measurement tools for SDPs and supporting protocols.

1/31/2002 11

Generic UML Structural Model of
Service Discovery Protocols

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

1/31/2002 12

Generic UML Functional Model of
Service Discovery Protocols

NOTE: This <<Interface>>
exists only if there are no
Cache Managers. The
condition applies to SLP.

NOTE: If Cache MGRs are
supported, Service Discovery
may be "Cache MGR
Discovery". If not, it may be
"Service Listening"

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repository entry>>

of DESC to Service
set Attributes()
set API()
set GUI()
set Identity()
set Type()

<<Interface>>

11

of SCM to Service User

<<OPT>> add Service Notificiation Request()
<<OPT>> renew Service Notificiation Request()
<<OPT>> delete Service Notificiation Request()
find Service()

(from of DESC to Service User)

<<Interface>>

of DESC to Service
get Attributes()
get API()
get GUI()
get Identity()
get Type()

<<Interface>>

11 LOCAL CACHE MANAGER

Start Aging Task()
(from Structural View)

SERVICE PROVIDER

1

1

1

1

invokes operations

SERVICE CACHE
(from Structural View)

11

SERVICE USER
(from Structural View)

0..*

0..*

0..*

0..*

invokes operations
0..*

0..*

0..*

0..*

invokes
operations

0..*

0..*

0..*

0..*
invokes

 operations

0..10..1

 of SM to Service
add Service Description()
change Sevice Description()
delete Service Description()

<<Interface>>

0..*

0..1

0..*

0..1

invokes operation

 of SCM to Service MGR
add Service Description()
change Service Description()
delete Service Description()
<<OPT>> renew Service Description()

<<Interface>>

11

of SM to Service Cache MGR
<<OPT>> service Description Expired()

<<Interface>>

0..* 0..*0..* 0..*
invokes
operation

of SM to Service User
find Service()
<<OPT>> add Service Parm Change Notification()
<<OPT>> renew Service Parm Change Notification()
<<OPT>> delete Service Parm Change Notification()

<<Interface>>

0..*

0..*

0..*

0..*

invokes operations

 of SU to MGR of Services
service Matched Callback()
<<OPT>> service Notification Request Expired()
<<OPT>> service Parameter Change Matched()

<<Interface>>
0..*

0..*

0..*

0..*

invokes
operations

0..10..1

SERVICE MANAGER
(from Structural View)

0..10..1

0..*

0..*

0..*

0..*
invokes operations

0..10..1

0..10..1

0..*

0..*

0..*

0..*

Invoke Service
 Matched

1/31/2002 13

UML Structural Model of Jini

Notification Request
(from Data View)

<<repository entry>>

Notificat ion Cache
<<repository>>

0..*0..*

Aggregates

Service Cache
<<repository>>

Service Repository
<<repository>>

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data Vi ew)

<<repository entry>>

0..*0..*

Aggregates

11

owns

SERVICE CACHE MANAGER
discover Network Context()
activate Manager Discovery()
activate Announce Processing()
start Matching Task()
start Aging Task()
Service Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discover Network Context()
Cache Manager Discovery()
Announce Service Processing()
start Renewal Task()
Service Manager()

11

Contains

0..*0..*

manages

0..*0..*

+info cache

0..*
+service info

source

0..*
service information collection

SERVICE USER
discover Network Context()
Service Discovery()
start Renewal Task()
Service User()

0..*

0..*

0..*

0..*

invokes operations

0..*0..*
queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

1/31/2002 14

UML Functional Model of Jini

NOTE: This <<Interface>>
exists only if there are no
Cache Managers. The
condition applies to SLP.

NOTE: If Cache MGRs
are supported, Service
Discovery may be
"Cache MGR
Discovery" . If not , it

 of SCM to Service MGR
add Service Description()
change Service Description()
delete Service Description()
renew Service Description()

<<Interface>>

of SM to Service Cache MGR
service Description Expired()

<<Interface>>
SERVICE CACHE MANAGER

(from Structural View)

11

0..*
0..*

0..*
0..*invokes

operation

 of SM to Service
add Service Description()
change Sevice Description()
delete Service Description()

<<Interface>>

SERVICE MANAGER
(from Structural View)

0..10..1

0..*
0..*

0..*
0..*

invokes operations

0..10..1

of DESC to Service
set Attributes()
set API()
set GUI()
set Identity()
set Type()

<<Interface>>

 of SU to MGR of Services
service Matched Callback()
service Notification Request Expired()

<<Interface>>
0..*

0..*

0..*

0..*

invokes
operationsof SCM to Service User

add Service Notificiation Request()
renew Service Notific iat ion Request()
delete Service Notificiat ion Request()
find Service()

(from of DESC to Service User)

<<Interface>>
11

SERVICE PROVIDER

0..*

0..1

0..*

0..1

invokes operation

1

1

1

1
invokes operations

of SM to Service User
find Service()

<<Interface>>

0..10..1

SERVICE DESCRIPTION
(from Data View)

<<repository entry>>

11

SERVICE USER
(from Structural View)

0..10..1

0..*

0..*

0..*

0..*

invokes
operations

0..*

0..*

0..*

0..*

invokes operat ions

0..*

0..*

0..*

0..*

invokes operations

of DESC to Service User
get Attributes()
get API()
get GUI()
get Identity()
get Type()

<<Interface>>

11
0..*

0..*
0..*

0..*

invokes
 operations

1/31/2002 15

Architecture Description Languages and Tools

Allow us to model the essential complexity of discovery protocols,
while ignoring the incidental complexity

Incidental complexity represented by the code: for example consider
Core Jini – an 832 page commentary on the massive amount of Java
code that comprises Jini, which also depends on complex underlying
code for Remote Method Invocation, Distributed Events, Object
Serialization, TCP/IP, UDP, HTTP, and Multicast Protocol
Implementation.

Jini documented in a 385 page specification; however, the document
is static and thus captures only the normative complexity because
most of the essential complexity arises through interactions among
distributed independently acting Jini components.

1/31/2002 16

Rapide, an Architecture Description Language and Tools
Developed for DARPA by Stanford

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Model Specification in Rapide

Execute with Raptor Engine

Analyze Generated POSETs

MODELING
ESSENTIAL
COMPLEXITY

Assess Invariant
Satisfaction &
Constraint
Violations

1/31/2002 17

Layered View of Prototype JINI Architecture in Rapide
documented using SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 18

Deploy a Model Topology with the Raptor Engine

1/31/2002 19

Drive Model Topology with Scenarios

Node NodeID {on || off} [at time || after delay] [for duration]
Link LinkID {fail || restore} [at time || after delay] [for duration]
Mcast McastID {fail || restore} NodeID {receive || transmit} [at time ||

after delay] [for duration]
Group NodeID {leave || join} GroupID [at time || after delay] [for duration]
SCM NodeID {add || discard} SCMID [at time || after delay] [for duration]
Service NodeID add ServiceID [attributes] [leasetime] [at time || after delay]

[for duration]
Service NodeID {delete || expire} ServiceID [at time || after delay]
Service NodeID change ServiceID attributes [at time || after delay]
Find NodeID TemplateID [ServiceTemplate] on SCMID [MaxMatches]

[at time || after delay]
Notify NodeID add TemplateID [ServiceTemplate] [Transitions] [SCMID]

[leasetime] [at time || after delay] [for duration]
Notify NodeID {delete || expire} TemplateID [SCMID] [at time || after delay]

1/31/2002 20

Analyze Invariant Satisfaction & Constraint Violations
in Real-Time

Sample Invariants

(SM SD SCM): (SM,SD) SCM registered-services
 SCM SM discovered-SCMs

(SU NR SCM): (SU,NR) SCM registered-notifications
 SCM SU discovered-SCMs

SM is Service Manager
SD is Service Description
SCM is Service Cache Manager
SU is Service User
NR is Notification Request
registered-services is a set of (SM,SD) pairs
registered-notifications is a set of (SU,NR) pairs
discovered-SCMs is a set of SCM

1/31/2002 21

Analyze POSETs Off-Line to Compare and Contrast
Behaviors Given a Congruent Topology and Scenario

Metrics Based on Numbers of Messages

• Message volume?
• Message intensity?

Metrics Based on Time

• Service latency?
• Service throughput?
• Recovery latency?

Metrics Based on Change

• Derivative of the message intensity?
• Derivative of the service throughput?
• Derivative of the service latency?

Metrics Based on Complexity

• Degree of dependency among messages?
• Rate of constraint and invariant violations?
• Rate of exceptions?

1/31/2002 22

SDP Performance / Scalability Measurements

Approach: Methodologies and tools for comparative performance and
scaling analysis of live SDP implementations.

Initial focus - Jini and UPnP

• Design of technology independent benchmark service.

• Development of synthetic workload generation tools for emulating the
behavior of large scale dynamic ad hoc networking environments.

• Development of implementation independent performance measurement
methodologies and tools for SDPs and supporting protocols.

1/31/2002 23

SDP Benchmark Service

• Objective – workload basis for meaningful comparative comparisons
of Jini / UPnP performance.

– Simple device / service that can be used to exercise all significant discovery
/ control capabilities of Jini and UPnP.

• Benchmark Service – very simple counting device.
– Capabilities - Get / Set integer counter.
– Attributes – GID, Name, Type

• Enable multiple match / query semantics
– Service interfaces

• Control – get / set integer
• GUI – simple user interface for control
• Eventing – remote notification of counter change

• Jini and UPnP instantiations

1/31/2002 24

Jini Benchmark Service
/*
* BasicService Interface
* This is the interface for the Basic Jini service for
* the client side.
*
* Scott Rose
* NIST
* 9/6/00
*/

package basicservice;

import java.rmi.RemoteException;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.EventRegistration;

public interface BasicServiceIF
{

public int getData() throws RemoteException;
public void setData(int newVal) throws RemoteException;
public EventRegistration addRemoteListener(RemoteEventListener rev)

throws RemoteException;
public void getGUI() throws RemoteException;

}

1/31/2002 25

UPnP Benchmark Service
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<URLBase>http://129.6.51.81:20002</URLBase>
<device>
<deviceType>urn:schemas-upnp-org:device:basicdevice:1</deviceType>

<friendlyName>Basic Service for Service Discovery Protocol
Testing</friendlyName>

<manufacturer>NIST-ANTD-ITG</manufacturer>
<manufacturerURL>http://w3.antd.nist.gov</manufacturerURL>
<modelDescription>UPnP Basic Service 1.0</modelDescription>
<modelName>BasicService</modelName> <modelNumber>1.0</modelNumber>
<modelURL>http://w3.antd.nist.gov/modelURL</modelURL>
<serialNumber>123456789001</serialNumber> <UDN>uuid:Upnp-BasicService-1_0-

darwin-20002</UDN>
<UPC>123456789</UPC>
<serviceList>

<service>
<serviceType>urn:schemas-upnp-

org:service:basicservice:1</serviceType>
<serviceId>urn:upnp-org:serviceId:basicservice1</serviceId>
<controlURL>/upnp/control/basicservice1</controlURL>
<eventSubURL>/upnp/event/basicservice1</eventSubURL>
<SCPDURL>/basicserviceSCPD.xml</SCPDURL>

</service>
</serviceList>
<presentationURL>/basicdevice.html</presentationURL>

</device>
</root>

1/31/2002 26

Synthetic Workload Generation Tools

• Objective – Emulate large, dynamic environments of 100’s of
devices / services and 10’s of control points / clients.

– Dynamic devices providing the benchmark service.
– Scripted control points execute measurement scenarios.

• Jini and UPnP Experimenters Toolkits
– Drive real implementations: SunMS Jini, Intel Linux & Windows ME UPnP.
– Emulate the behavior of a large number of dynamic devices

• # devices, device creation rate, device life time, service life time
• Devices implement the benchmark service

– Emulate the behavior control points / scripted behavior for testing
• # clients, query workload – (query type, service names / types)

• Jini / UPnP Device Emulation Tools
– Initial development complete – target of 100’s devices and 10’s of control

points met.
– Discovered scaling problems in Intel Linux UPnP 1.0 SDK

1/31/2002 27

Some Example Results: Jini vs UPnP Discovery

• Example experiment: Query latency to find all devices of a given type.

Query Latency: All Devices of Type X

0
200
400
600
800

1000
1200
1400
1600
1800

2 4 8 16 32 64

Devices

Ti
m

e
(m

s)

Jini
UPnP

1/31/2002 28

Intel Linux UPnP Scaling Problems

• Problems encountered in achieving initial scaling goals for device
emulation tools.

• UPnP scalability above 40 devices a function of protocol tuning
parameters (e.g., response jitter, multicast retransmission factor).

UPnP Scalability vs Jitter

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8 16 32

Devices

Av
g Q

ue
ry

 La
ten

cy
 S

pe
cif

ic
UI

D

J = 5 msec = 45 devices
J = 500 msec = 50 devices
j = 5000 msec = 55 devices

1/31/2002 29

Performance Measurement Methodologies

• Developed performance scenarios & metrics
– Multiple service initiation
– Client type query – single instance, multiple instances, all

instances
– Client instance query – query for existing service, persistent query
– Client event notification – registration latency, notification latency

• Designing implementation independent on-the-wire
performance (response/load) measurement tools.
– How to measure HTTP/RMI based protocol transactions?

1/31/2002 30

Modeling and Analysis: Upcoming Milestones
and Publications

• Jan 2001 – Complete Rapide Model for Jini, including scenario
driver and specification of invariants and constraints

• Mar 2001 – Complete Rapide Model for Universal Plug-and-Play
• Jul 2001 – Complete Off-Line Analysis Tools for POSETs
• Aug 2001 – Complete Rapide Model for Service Location Protocol
• Oct 2001 – Partial analysis of Jini, UPnP, and SLP
• Dec 2001 – Complete analysis of Jini, UPnP, and SLP

Milestones

• Spring 2001 – Paper identifying flaws in Jini and UPnP and describing
how those flaws were found

• Fall 2001 – Paper proposing invariants for service discovery protocols,
and evaluating how Jini, UPnP, and SLP fare

• Winter 2002 – Paper comparing and contrasting Jini, UPnP, and SLP at
the level of POSET metrics

Planned Papers

1/31/2002 31

Measurement: Upcoming Milestones
and Contributions

• Feb 2001 – Complete device / control point workload generation tools.
• Mar 2001 – Complete implementation independent measurement tools.
• May 2001 – Complete testbed performance measurement analysis.
• July 2001 – Complete development of simulation environment.
• Sep 2001 – Complete simulation analysis of SDPs.

Milestones

• Summer 2001– Public domain release of Jini/UPnP experimenters toolkit
consisting of workload generation tools, scenario scripts, and performance
measurement tools for SDPs and supporting protocols.

• Fall 2001 – Public domain release of simulation environment for ad-hoc
networks and protocol models for Jini/UPnP.

• Fall 2001 – Publication providing a quantitative performance/scaling
comparison of Jini/UPnP technologies.

Planned Contributions

1/31/2002 32

Plan to Assess Scalability

• Use Rapide Models as a Basis to Construct Simulation Models for Jini,
UPnP and SLP, Possibly using JavaSim (from Ohio State University)
or SSFnet (from Rutgers)

• Use Results from Measurement Portion of the Project to Parameterize
the Simulation Models of the Discovery Protocols

• Design Experiments to Assess the Effect of Large Service and Device
Populations on Network Traffic

1/31/2002 33

Modeling and Analysis Demonstration

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Rapide Model of Jini V1.1 Execute with Raptor Engine

Generate POSETs

